UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ge 2	2	Mark Scheme: Teachers' version	Syllabus	Paper	•
				GCE A/AS LEVEL – May/June 2009	9702	04	
				Section A			
1	(a)	forc	e pe	r unit mass <i>(ratio idea essential)</i>		B1	[1
	(b)	8.6	× (0	M/R^2 .6 × 10 ⁷) ² = M × 6.67 × 10 ⁻¹¹ 6 × 10 ²⁴ kg		C1 C1 A1	[3
	(c)	(i)	or or	<i>er</i> potential decreases as distance from planet decreases potential zero at infinity and X is closer to zero potential $\alpha -1/r$ and Y more negative point Y is closer to planet.	ses	M1 A1	[2
		(ii)	idea (6.8 v =	a of $\Delta \phi = \frac{1}{2}v^2$ $5 - 5.3) \times 10^7 = \frac{1}{2}v^2$ $5.5 \times 10^3 \text{ ms}^{-1}$		C1 A1	[2
2	(a)	eith or or or	ier	the half-life of the source is <u>very</u> long decay constant is <u>very</u> small half-life >> 40 days decay constant << 0.02 day^{-1}		B1	[1
	(b)	eith 1.5 V =	er p × 10 = 3.2 uses	of helium atoms = $3.5 \times 10^{6} \times 40 \times 24 \times 3600$ = 1.21×10^{13} $V = NkT$ or $pV = nRT$ <u>and</u> $n = N/N_A$ $5^5 \times V = 1.21 \times 10^{13} \times 1.38 \times 10^{-23} \times 290$ 2×10^{-13} m ³ $T/^{\circ}$ C or $n = 1$ or $n = 4$, then 1 mark max for calculated	ation of number o	C1 C1 A1 f	[3
5	(a)	(alle	ow a	ng separation of molecules / breaking bonds between r <i>toms/molecules, overcome forces)</i> <u>ork</u> against atmosphere (during expansion)	nolecules	B1 B1	[2
	(b)	(i)	1 2	<i>either</i> bubbles produced at a <u>constant rate</u> / mass <u>constant rate</u> <i>or</i> find mass loss more than once and this rate sh <i>or</i> temperature of liquid remains constant to allow/cancel out/eliminate/compensate for heat losse (<i>do not allow 'prevent'/'stop'</i>)	ould be constant	t B1 B1	[1 [1
		(ii)	(70	of power × time = mass × specific latent heat - 50) × 5 × 60 = $(13.6 - 6.5) \times L$ = 845 J g ⁻¹		C1 C1 A1	[3

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A/AS LEVEL – May/June 2009	9702	04	
4	(a) (i) (<i>t</i>	θ =) ω t (allow any subject if all terms given)		B1	[1]
	(ii) (S	$Q = r \sin \omega t$ (allow any subject if all terms given)		B1	[1]
		the solution of the equation $a = -\omega^2 x$ $\omega^2 x$ is the (defining) equation of s.h.m.		M1 A1	[2]
	(c) (i) f	= $\omega / 2\pi$ = 4.7 / 2 π		C1	
		= 0.75 Hz		A1	[2]
		= $r\omega$ (<i>r</i> must be identified) = 4.7 × 12		C1	
		$= 56 \text{ cm s}^{-1}$		A1	[2]
5		tio of charge (on body) and its potential to not allow reference to plates of a capacitor)		B1	[1]
	• • •	otential at surface of sphere =) $V = Q / 4\pi\varepsilon_0 r$ = $Q / V = 4\pi\varepsilon_0 r$		M1 A0	[1]
	(b) (i) C	= $4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$ = 4.0×10^{-11} F (allow 1 s.f.)		A1	[1]
	(ii) Q	= CV = $4.0 \times 10^{-11} \times 7.0 \times 10^{5}$ = $2.8 \times 10^{-5} \text{ C}$		A1	[1]
		is an insulator / not a conductor / has no free electrons es do not move (on an insulator) so no single value for the potential		B1 B1	
	or	charge cannot be considered to be at centre		B1	[3]
	(d) either energ	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ y = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$ = 8.6 J		C1 C1 A1	[3]

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	,
		GCE A/AS LEVEL – May/June 2009	9702	04	
6	(uniforn) unit of magnetic flux density / magnetic field strength (uniform) <u>field</u> normal to wire carrying current of 1 A giving force (per unit length) of 1 N m ⁻¹		B1 M1 A1	[3]
	fore	ce on magnet / balance is downwards (so by Newton's t ce on wire is upwards e P is a north pole	hird law)	B1 M1 A1	[3]
	2.3	= BIL and F = mg (g missing, then 0/3 in (ii)) $S \times 10^{-3} \times 9.8 = B \times 2.6 \times 4.4 \times 10^{-2}$ (g = 10, loses this is = 0.20 T	mark)	C1 C1 A1	[3]
		for maximum current = $2.3 \times \sqrt{2}$ riation = $2 \times 2.3 \times \sqrt{2}$		C1	
	lotal va	= 6.5 g		A1	[2]
7	push <u>known</u> observe cur (induced) fie	s with meter <i>(do not allow inclusion of a cell)</i> o pole into coil rent <u>direction</u> <i>(not reading)</i> eld / field from coil repels magnet tes rule to determine direction of magnetic field in coil		B1 B1 B1 B1	
	or rev	rersing magnet direction gives opposite deflection on me induced current such as to oppose the change producir		B1 B1	[6]
8	if expos photon	neory predicts any frequency would give rise to emissior sure time is sufficiently long has (specific value of) energy dependent on frequency on if energy greater than threshold / work function /		M1 A1 M1	
	electror	n from surface		A1	[4]
	of elect	is packet/quantum of energy romagnetic radiation ı) energy = <i>h</i> × frequency		M1 A1 B1	[3]
	waveler	<u>article</u> has an (associated) wavelength ngth = h / p o is the momentum (of the particle)		B1 M1 A1	[3]
9	(a) (i) ∆ <i>N</i>	$I / \Delta t$ (ignore any sign)		B1	[1]
	(ii) ∆ <i>N</i>	/ N (ignore any sign)		B1	[1]
	$A = A_0$ 0.92 =	must decay by 8% $_{0} \exp(-\ln 2 t / T_{\frac{1}{2}})$ or $A / A_{0} = 1 / (2^{t/T})$ $\exp(-\ln 2 \times t / 5.27)$ or $0.92 = 1 / (2^{t/5.27})$ 634 years		C1 C1 C1	
	= 23 (allow 2	B34 years 30 days $2 \text{ marks for A/A}_0 = 0.08, \text{ answer 7010 days}$ $mark \text{ for A/A}_0 = 0.12, \text{ answer 5880 days}$		A1	[4]

Page 5		e 5	Mark Scheme: Teachers' version	Syllabus	Paper	-
			GCE A/AS LEVEL – May/June 2009 97		04	
			Section B			
10			the output is added to /returned to / mixed with the inpu ut of phase with the input / fed to inverting input	ut	B1 B1	[2]
	• •	25 = 1 R = 5ks	+ (120 / <i>R</i>) Ω		C1 A1	[2]
	(c)	(i) –2 ∨	,		A1	[1]
	(ii) 9∨			A1	[1]
11	r r s t (r	reflected received signal pr time betv (informat reflected	ultrasound at boundaries / boundary / detected (at surface) by transducer occessed and displayed ween transmission and receipt of pulse gives tion about) depth of boundary intensity gives information as to nature of boundary <i>r points, 1 each, max 4</i>)	 (1) (1) (1) (1) (1) (1) 	В4	[4]
		(i) coef ii) fract	ficient = $(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ = $(6.3 - 1.7)^2 / (6.3 + 1.7)^2$ = 0.33 (unit quoted, then -1) tion = $\exp(-\mu x)$		C1 A1 C1	[2]
	,	,	$= \exp(-23 \times 4.1 \times 10^{-2})$ = 0.39		A1	[2]
	(i		nsity = 0.33 × 0.39 ² × I = 0.050 I not allow e.c.f. from (i) and (ii) if these answers are gre	eater than 1)	C1 A1	[2]
12	(a) I	loss / rec	duction in power / energy / voltage/ amplitude (of the sig	gnal)	B1	[1]
	(b)	(i) attei	nuation = 125 × 7 = 875 dB		A1	[1]
	(mplifiers = $20 \times 43 = 860 dB$		A1	[1]
	(overall g	$10 \log(P_1/P_2)$ ain = -15 dB / attenuation is 15 dB		C1 C1	
		P = 14	0 lg(<i>P</i> / 450) mW		A1	[3]

Page 6		e 6 Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE A/AS LEVEL – May/June 2009	9702	04	
3 (a)	serial-to-p	ning cct; (r.f.) amplifier; demodulator; arallel converter; DAC; (a.f.) amplifier sets of 2 marks each			
		lentified correctly r or omission, deduct 1 mark)		B2	
	5 blocks ir	correct order cks in correct order, allow 1 mark)		B2	[4
(b)	signal rece transferred computer assigns a	nsmits signal (to identify itself) eived by (several) base station <u>s</u> d to cellular exchange selects base station with strongest signal (carrier) frequency	(1) (1) (1) (1) (1)		
	•	1 each, max 4)		B4	[4